Techniques for BSC Decontamination

Henry S. Luftman, PhD

DRS Laboratories, Inc. 1-888-377-1533 hluftman@drslaboratories.com

Outline

- General steps in performing a BSC Decontamination
- Chemical-Specific Issues
 - Methodologies
 - Advantages / Disadvantages
- Comparison
- DRS Laboratories' Position

Choice of Decontaminants

- Formaldehyde Gas
- Hydrogen Peroxide Vapor
- Chlorine Dioxide Gas
- Others
 - Methyl Bromide
 - Ethylene Oxide
 - Ozone

Typical Applications

- Clean-up of a contamination event
- Maintenance or other need to access contaminated plenums
- Moving of BSC
- HEPA filter replacement
- End of work program

Requirements for a Successful SD

- Decontamination typically looking for a log 4-6 reduction of test bacterial spores
- Choice of decontaminant
- Penetration to all surfaces
- Penetration through HEPA filter and into "dead legs"
- Temperature and humidity control
- Containment of fumigant

Requirements for a Successful SD (Cont.)

- Disposal of decontaminator
 - Vent, neutralize, scrub
- Validation of decontamination
 - Biological indicators
- Material compatibility
- Safety

General Preparation Options

- Seal BSC when decontamination required
- Construct BSC with decontamination facilities included
- Permanently modify BSC for specific decon type
- Ensure gas-tight damper if ducted to building
- Insert recirculation (optional)

General Preparation – Biological Indicators

- Given 7 –day test time, typically assume decontamination method already validated
- If using indicators, often *B. atrophaeus* or *G. stearothermophilus*
- Use appropriate substrate (not cellulose for HP)
- Upstream and/or downstream of HEPA filters
- Log-Reduction enumeration vs. Go / No Go
- Controls

General Preparation - Final

- Establish and measure proper humidity & temperature
- Final seal
- Pressure check (neutral to adjacent area)
- Establish safety perimeter
- Meet OSHA requirements

General Procedure

- Fumigant generation to a steady state concentration
- Environmental monitoring for leakage
 - E.g., Draeger pumps, infrared analyzers
- Appropriate personnel protective equipment (PPE)
 - Full face respirator, gloves, lab coat
- Neutralization or scrubbing → Ventilation

General Procedure (Cont.)

- Validation of BSC Decontamination
 - Biological Indicators (opt.)
 - Monitoring of relative humidity, space temperature, and/or decontaminant concentration during process

Formaldehyde Gas (CH₂O)

- Typically via depolymerization of Paraformaldehyde (PF)
- NSF standard o.3 gm/ft³→ ~8000 ppm
- Mechanism: methylization of DNA
- Requires relative humidity > 60%
- Target contact time > 6 hr
- Use Bacillus atrophaeus as BI

Formaldehyde Gas (Cont.)

- Neutralization with ammonia gas (NH₃)
 - ~ 1 hr contact time
- Vent and environmental monitoring
- Clean "fall-out"
 - Mixture of methenamine and PF
 - Can limit PF with humidity control

Formaldehyde Gas - Advantages

- "True" gas
- Relatively inexpensive
- General material compatibility
- Industry accepted

Formaldehyde Gas - Issues

- "Fall-out" residue
 - Added clean-up time
- Carcinogen
- Potential odor residual
- Polymerization on cold surfaces

Hydrogen Peroxide Vapor (H₂O₂)

- Typically delivered by flash vaporization of aqueous peroxide mixture
 - The mixture is generally close to or above saturation in air
- Two major vendors of generators with significant differences
 - Mechanism : Oxidation
- Required contact time less than formaldehyde
- Use *Geobacillus stearothermophilus* as BI

HP Vapor – STERIS (VHP)

- Avoids condensation on surfaces to minimize corrosion and optimize distribution
- Typically two portals into BSC for VHP inlet and return
- Design cabinet with appropriate circulation paths
- Dehumidify to < 30% RH

HP Vapor – STERIS (Cont.)

- Typical 1-2mg/liter, 750-1500 ppm (D~1-2 min)
 - Data that D value is lower than for liquid HP
- Target 70-85% RH during decontamination
- Continually introduce HP, decomposing HP in return
- Cycle Phases
 - Dehumidification / Conditioning / Decontamination / Aeration

HP Vapor – BIOQUELL (Clarus)

- Seeks "micro-condensation"
 - BQ believes D ~2 min required liquid presence
- Swiveling source to inject high-speed droplets to all surfaces
 - Condensate "bounces"
- Monitor for onset of condensation

HP Vapor Advantages

- Safe by-products (water and oxygen)
- No residue
- Industry accepted
- Automated
- Relatively short cycle time if properly engineered

HP Vapor Issues

- Instability of HP toward decomposition
- Decomposition may block access of decontaminant
- Condensation may cause control issues
- Cellulose materials absorb or decompose
 - May effect decontamination or aeration
- Some material issues nylon, cellulose, copper, lead, iron oxide, epoxy
 - Condensation may effect painted surfaces
- Capital equipment cost

HP Operating Conditions

- (Based on limited information)
- Typical duration from conditioning through decontamination:
 - 1-2 hours
- Typical aeration:
 - 2-4 hours

Chlorine Dioxide Gas (ClO₂)

- Mechanism: Selective oxidation (no chloridation)
- Generated on site via reaction
 - $Cl_2(g) + 2NaClO_2 \rightarrow 2ClO_2(g) + 2NaCl$
- Visible green gas
- Humidification required, 65-90% RH
- D-value 0.1-0.8 min for 10-30 mg/L
 - (3,500-10,000 ppM)

Chlorine Dioxide Gas (Cont.)

Scrubbing

- Wet, with alkaline solutions
- Dry, via absorption (e.g., charcoal)
- Direct venting option (use by paper industry)
- Monitor concentration and relative humidity
- Use Geobacillus stearothermophilus as BI (?)
- The Halide Group, ClorDiSys Solutions, Sabre Technologies (different reaction)

Chlorine Dioxide Gas – Advantages

- Safe by-products (oxygen and salt)
- No residue
- Not flammable / explosive
- "True gas no condensation issues
- Reputation for use in Anthrax decontamination

Chlorine Dioxide Gas - Issues

- Less well-known or characterized
- Mild corrosion/discoloring to cold steel, copper, brass
 - Particularly in the presence of water
- Potentially corrosive if Chlorine gas (Cl₂) is present
 - Care to avoid Cl₂ in synthesized CD
 - Care to avoid Cl₂ creation by UV exposure
- Current low PEL limit (0.1 ppm)

CD Operating Conditions

- Typical duration conditioning through decontamination:
 - 1-1.5 hr
- Typical duration of aeration / scrubbing:
 - 0.25-0.5 hr

Comparison

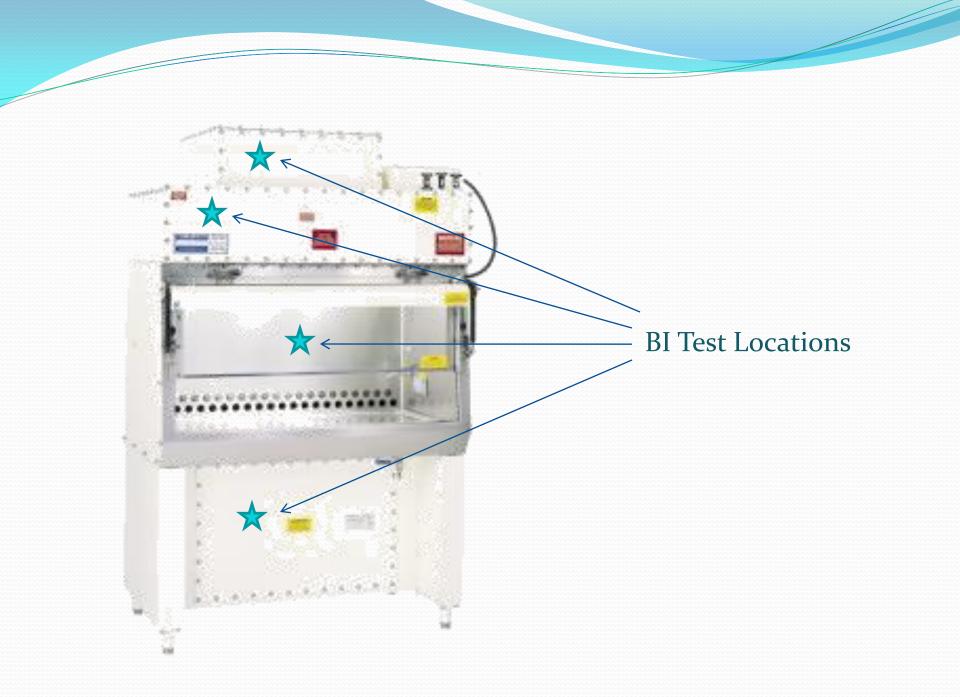
Issue	Formaldehyde Gas	Hydrogen Peroxide Vapor	Chlorine Dioxide Gas
Sporocidal effectiveness	+	+	+
Effective through HEPA filters	+	?	+
Non Carcinogenic	-	+	+
Toxicity (TWA PEL)	o.75 ppm	1.0 ppm	o.1 ppm
Non-explosive (at used concentrations)	-	-	+
Humidity requirement (RH)	60-90%	30% (Steris) or ambient (Bioquell)	65-90%
No residue	-	+	+
Non-corrosive	+	+ (dry) / ? (cond.)	+ / - (with chlorine)
Method of removal	Neutralizer	Catalytic breakdown	Scrubbing
Limited development effort	+	-	+
Limited cost	+	-	-

NSF/ANSI 49 – 2002 Annex G

Recommended microbiological Decontamination procedure

"Prior to decontamination with an alternative [note added: other than depolymerized paraformaldehyde] method (such as VHP), cycle parameters and validation of those parameters must be developed for each model and size of BSC."

Baker Company in CleanRooms (Mar. 2001)


- "Existing cabinets can be modified in the field to accept hydrogen peroxide vapor generators... However, these alternatives are less than optimal because:
- Such cabinets are not designed for fast distribution of H₂O₂ and poor vapor distribution will require long cycle times – considerably longer than for formaldehyde cycle. ..."

DRS Laboratories' Position

- Safety issue in maintaining BSC following Clarus decontamination
- Need validation data for decontamination covering
 - Variation of safety cabinet
 - Variation of HEPA filter thickness
 - Demonstration of decontamination on up and down stream sides of HEPA filter
 - Demonstration of decontamination if cabinet has a failed motor

Chlorine Dioxide Alternative

- DRS Laboratories has experience with two delivery systems:
 - Direct ClO₂ insertion into BSC
 - Continuous concentration monitoring
 - Wet "scrubbing" of gas after cycle
 - Tablet generation of ClO₂ in water
 - "Bubbling" air to draw out gas
 - Dry "scrubbing" after cycle
 - No additional cost relative to PF

Current CD Data

- Four runs with four BI's each (*G. Stearothermophilus*)
- 125 min. from humidification to opening
- Exhaust plenum wo/ recirculation:
 - 3.5-5.5 log reduction
- Exhaust plenum w/ recirculation:
 - 6.0-6.2 log reduction
- Of others,
 - 11/12>6.2 log reduction, 1/12~5.6 log reduction

Chlorine Dioxide Validation

- Less of an issue, as ClO₂ is "true" gas
- Have begun process at DRS Laboratories on multiple cabinets
- Propose to monitor with BI's on other cabinets on short term after DRS Laboratories internal validation complete
- DRS Laboratories' technicians would not require waiting for BI results during this phase